CHROM. 23 484

Hydrogen bonding

XVI. A new solute solvation parameter, π_2^{H} , from gas chromatographic data

Michael H. Abraham* and Gary S. Whiting

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (UK)

Ruth M. Doherty

Naval Surface Warfare Center, White Oak Laboratory, Silver Spring, MD 20910 (USA)

Wendel J. Shuely

US Army Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD 21010 (USA)

(First received February 19th, 1991; revised manuscript received May 23rd, 1991)

ABSTRACT

The general solvation equation,

 $\log V_{G}^{0} (\text{or } \log L) = c + rR_{2} + s\pi_{2}^{H} + a\alpha_{2}^{H} + b\beta_{2}^{H} + l \log L^{16}$

has been used to set up a new $\pi_2^{\rm H}$ parameter of solute dipolarity-polarisability, mainly through the extensive data of McReynolds and Patte *et al.* Values of $\pi_2^{\rm H}$ are tabulated for several hundred solutes, and two simple rules have been formulated to enable $\pi_2^{\rm H}$ to be estimated for many types of aliphatic functionally substituted compounds. A coherent set of effective solvation parameters, $\Sigma \pi_2^{\rm H}$, $\Sigma \alpha_2^{\rm H}$, $\Sigma \beta_2^{\rm H}$, and also R_2 and log L^{16} , allows the application of the general solvation equation to the characterisation of any gas-liquid chromatographic stationary phase.

INTRODUCTION

Previously, we have shown [1-3] that processes in which a solute is distributed between the gas phase and some condensed phase can usefully be described through the general solvation equation

$$\log SP = c + rR_2 + s\pi_2^* + a\alpha_2^{\rm H} + b\beta_2^{\rm H} + l\log L^{1\circ}$$
(1)

Such processes include the solubility of a series of gaseous solutes in a given solvent [2], and chromato-

graphic processes in which retention data are obtained for a series of compounds on a given stationary phase, at some constant temperature [3].

As regards gas-liquid chromatography (GLC), the dependent variable in eqn. 1 can be log L (or log K), where L (or K) is the Ostwald solubility coefficient or gas-liquid partition coefficient, log V_G , where V_G is either the specific retention volume referred to 273 K or the specific retention volume at the column temperature, or even log τ , where τ is the adjusted relative retention time [3]. All these dependent variables will give rise to the same values of

0021-9673/91/\$03.50 © 1991 Elsevier Science Publishers B.V. All rights reserved

r, s, a, b and l in eqn. 1, but will yield different values of the constant term. The explanatory variables in eqn. 1 are R_2 , an excess molar refraction that can be determined experimentally [1], π_2^* , the solute dipolarity-polarisability, to which we shall refer later, $\alpha_2^{\rm H}$, an experimentally determined solute hydrogenbond acidity [4], $\beta_2^{\rm H}$, an experimentally determined solute hydrogen-bond basicity [5], and log L^{16} , where L^{16} is the solute Ostwald solubility coefficient on hexadecane at 298 K [6].

Of course, values of R_2 , α_2^{H} , β_2^{H} and log L^{16} can be obtained through various approximations and estimations, all based on the original experimentally determined values. There are, however, difficulties with the solute parameter π_2^* . Originally [7,8] π_2^* was taken as identical with the Kamlet-Taft solvatochromic solvent parameter π_1^* for non-associated liquids only. As π_1^* is experimentally accessible only for compounds that are liquid at 298 K, values of π_2^* had then to be estimated not only for all associated compounds (including acids, alcohols, phenols and amides), but also for all compounds that are solid (or gaseous) at 298 K. In addition, there is present the inherent assumption that π_1^* is identical with π_2^* for non-associated liquids. We know that the Kamlet-Taft solvatochromic solvent basicity parameter β_1 is not exactly equivalent to the solute parameter $\beta_2^{\rm H}$ even for non-associated liquids [9], and it is possible that although π_2^* can be taken as equal to π_1^* for non-associated liquids as a generality, there may be a number of exceptions to this rule.

It seems necessary to set up a scale of solute dipolarity-polarisability based on some experimental procedure that will include, at least in principle, all types of solute molecule. The main purpose of this paper is to use the extensive sets of GLC data of McReynolds [10] and Patte *et al.* [11] to construct a new solute dipolarity-polarisability scale π_2^H for use in eqn. 1. At the same time, we shall set out an updated list of solute parameters that can be used in eqn. 1 to characterise GLC stationary phases and to interpret GLC retention data.

Since this work was started, Li *et al.* [12] have also concluded that the π_2^* scale derived from π_1^* is not very suitable for use in solvation equations such as eqn. 1, and have constructed an alternative π_2^c scale of solute dipolarity. We shall refer to this scale later.

RESULTS

McReynolds [10] determined V_G^0 values for up to 376 solutes on up to 77 stationary phases. Nearly all the phases were examined at a common temperature of 120°C. Of these 77 phases, 75 were found [3] to have no hydrogen-bond acidity at all, hence the $b\beta_2^{\text{H}}$ term in eqn. 1 drops out, and the log V_G^0 values can be correlated by the equation

$$\log V_{\rm G}^0 = c + rR_2 + s\pi_2^* + a\alpha_2^{\rm H} + l\log L^{16}$$
(2)

We thus have a series of equations (n = 1-75), one for each stationary phase, where the constants c, r, s, a and l have been determined by multiple linear regression analysis (MLRA), using known values of the solute parameters R_2 , π_2^* , α_2^H and log L^{16} for as many solutes as possible. Typically, around 150 solutes were included in each regression eqn. 2, generalised as

$$\log V_{\rm G(n)}^0 = c_n + r_n R_2 + s_n \pi_2^* + a_n \alpha_2^{\rm H} + l_n \log L^{16} (3)$$

It is convenient to subsume the constant c_n into the dependent variable to give 75 equations:

$$V_{n-1} = r_{n-1}R_2 + s_{n-1}\pi_2^* + a_{n-1}\alpha_2^{\rm H} + l_{n-1}\log L^{16}$$

$$\vdots \qquad (4)$$

$$V_{n-75} = r_{n-75}R_2 + s_{n-75}\pi_2^* + a_{n-75}\alpha_2^{\rm H} + l_{n-75}\log L^{16}$$

where

$$V_n = \log V_{G(n)}^0 - c_n$$
 (5)

We can now use the matrix defined by eqn. 4 in a vertical format, by regarding V_n for a given solute as the dependent variable and the constants r_n , s_n , a_n and l_n as four explanatory variables. In this new (vertical) MLR equation, R_2 , π_2^* , α_2^H and log L^{16} for the particular solute now become the unknown coefficients to be evaluated by MLRA. As all the input data are now related purely to properties of the solute, we can replace π_2^* with an experimentally determined parameter, π_2^H :

$$V(\text{solute}) = V_n = R_2 r_n + \pi_2^{\text{H}} s_n + \alpha_2^{\text{H}} a_n + \log L^{16} l_n$$
(6)

We carried out an analysis using eqn. 6, where the regression equation was forced through the origin, and obtained reasonable values of R_2 , $\pi_2^{\rm H}$, $\alpha_2^{\rm H}$ and log L^{16} for the various solutes studied. However, as R_2

SOME CALCULATED PARAMETERS USING EON. 7

Solute	π_2^{H}	α ^H ₂	$\log L^{16}$	n	S.D.	
Pent-1-ene	$0.09 \pm 0.004 \\ 0.08^a$	$0.00 \pm 0.007 \\ 0.00^{a}$	2.040 ± 0.007 2.013^{a}	36	0.014	
Toluene	0.47 ± 0.004 0.55^{a}	$-0.01 \pm 0.007 \\ 0.00^{a}$	3.327 ± 0.008 3.344^{a}	73	0.017	
Diethyl ether	0.27 ± 0.004 0.27^{a}	-0.02 ± 0.007 0.00^{a}	$\frac{1.975 \pm 0.008}{2.061^a}$	71	0.017	
Butanone	0.69 ± 0.004 0.67^{a}	$0.00 \pm 0.007 \\ 0.00^a$	$\frac{2.282}{2.287^{a}} \pm 0.007$	71	0.016	
n-Propyl acetate	0.61 ± 0.004 0.55^{a}	$0.00 \pm 0.007 \\ 0.00^{a}$	$\frac{2.847}{2.878^a} \pm \ 0.007$	73	0.016	
Propan-1-ol	$\begin{array}{c} 0.41 \pm \ 0.009 \\ 0.40^a \end{array}$	$0.37 \pm 0.006 \\ 0.33^a$	2.060 ± 0.006 2.097^{a}	72	0.016	

⁴ Previous values, see ref. 1.

is either known or can easily be calculated for any solute^{*a*}, we can reduce the number of explanatory variables by incorporating R_2 into the dependent variable:

$$\log V_{G(n)}^{0} - c_n - r_n R_2 = V' = \pi_2^H s_n + \alpha_2^H a_n + \log L^{16} l_n$$
(7)

Again, the regression eqn. 7 is constrained to pass through the origin; we found that the results were much more self-consistent than when a constant term was allowed to float. We can check results using our preferred eqn. 7 by comparison of calculated solute parameters with known values, where available. Some typical results are given in Table I together with the standard deviation (S.D.) of the parameter, the number of stationary phases in the set (always less than 75, because not all solutes were examined on all phases by McReynolds), and the overall S.D. of the dependent variable V'. We do not give correlation coefficients because these have little meaning for a regression equation forced through the origin.

There are a number of deficiencies in McReynolds' data, especially those connected with interfacial adsorption, and it is clear that for certain combinations of solute and stationary phase, the retention data are inexact owing to sorption at the liquid interface. Hydrocarbons in very polar phases are a particularly well known example. We point out, however, that our vertical or "inverse" MLRA procedure yields solvation parameters that are effectively averages for a given solute over 30–70 stationary phases (see Table I). In the event, hydrocarbons such as alkanes and alkenes behave normally in our inverse MLRA (see Table II).

We list in Table II the π_2^H values that we obtained through eqn. 7. We note that the π_2^H values in Table II are effective π_2^H values for a situation in which a solute molecule is surrounded by an excess of solvent molecules, and so may be more correctly denoted as $\Sigma \pi_2^H$. Before discussing these π_2^H values, we first analyse the extensive GLC data of Patte *et al.* [11].

Patte *et al.* [11] obtained retention data for 240 solutes on five stationary phases. All these phases are non-acidic, and so we obtained [1] five regression equations of the following type, one for each phase:

$$\log L' = c + rR_2 + s\pi_2^* + a\alpha_2^{\rm H} + l \log L^{16}$$
(8)

In eqn. 8, $\log L' = \log L - \log L$ (decane), but this affects only the constant in the regression equations. We cannot apply the "reverse" MLRA we used for the McReynolds data set, because we would have

^a Like the molar refraction itself, R_2 , an excess molar refraction, is almost an additive quantity.

Compound	$\pi_2^{\rm H}$			$\operatorname{Log} L^{16}$	Compound	π_2^{H}			$\log L^{16}$
	Eqn. 7	Eqn. 16	Eqn. 8		-	Eqn. 7	Eqn. 16	Eqn. 8	
Alkanes					Ethers (contined)				
Ethane		0.03	0.11	0.492	Dibutyl ether	0.24	0.16	0.18	3.924
Propane		0.03	0.08	1.050	Dipentyl ether	0.27			4.875
Butane		0.03	0.05	1.615	Di-3-methylbutyl ether	0.21			4.538
2-Methylpropane		0.07	0.07	1.409	Dihexyl ether	0.27			5.938
Pentane		0.03	0.03	2.162	Di-2-ethyl-1-butyl ether	0.17			5.421
Hexane	0.02	0.03	0.02	2.688	Methyl propyl ether	0.30			2.090
2,3-Dimethylbutane	-0.01			2.495	Methyl butyl ether	0.30			2.630
Heptane		0.03	0.01	3.173	Methyl 2-methylpropyl ether	0.25			2.442
2,4-Dimethylpentane		-0.04	-0.02	2.809	Methyl tertbutyl ether	0.29			2.378
Octane	0.01	0.03	0.00	3.677	Ethyl butyl ether	0.26			2.989
2-Methylheptane		0.08	0.01	3.480	Ethyl tertbutyl ether	0.20			2.611
3-Methylheptane		0.07	0.03	3.510	Propyl isopropyl ether	0.19			2.771
Nonane		0.03	0.00	4.182	Isopropyl tertbutyl ether	0.16			2.896
2,2,5-Trimethylhexane		0.16		3.530	Bis(2-ethoxyethyl)ether	0.79			4.592
Decane	0.03	0.03	-0.01	4.686	Ethyl vinyl ether	0.37			1.910
Undecane		0.03	-0.02	5.191	Butyl vinyl ether	0.34			2.970
Dodccane	0.03	0.03	0.03	5.696	2-Methylpropyl vinyl ether	0.29			2.746
Tridecane		0.03	-0.04	6.200	2-Ethyl-1-hexyl vinyl ether	0.32			4.682
Tetradecane	0.05	0.03	-0.03	6.705	2-Methoxyethyl vinyl ether	0.68			2.932
Hexadecane	0.07			7.714	Diallyl ether	0.38			2.430
Octadecane	0.05			8.722	Ethylene oxide	0.59			1.371
Cyclohexane		0.08	0.14	3.007	1,2-Propylene oxide	0.57			1.775
Hydrindane		0.19	0.22	4.530	1,2-Butylene oxide	0.55			2.350
Decalin		0.23	0.27	5.077	2-Methyl-1,2-propylene oxide	0.52			2.050
Alkenes					trans-2,3-Butylene oxide	0.52			2.140
Ethene		-0.13	0.32	0.289	cis-2,3-Butylene oxide	0.55			2.290
Propene		-0.09	0.25	0.946	1,3-Propylene oxide	0.61			2.086
But-1-ene		-0.05	12.0	1 491	1,3-Butylene oxide	0.52			2.360
Pent-1-ene	0.09	-0.05	61.0	2 047	Furan	0.54	0.39	0.51	2.140
Hex-1-ene		0.00	0 11	2.572	2-Methylfuran	0.50			2.430
Hept-1-ene		0.06	0.11	3.063	2-Acetyl-3-methylfuran		1.17		
Oct-1-ene		0.08	0.09	3.568	2-Acetyl-5-methylfuran		1.19		
cis-Oct-2-ene		0.11	0.12	3.683	2-Propanoyl-3-methylfuran		16.0		
2-Ethvlhex-1-ene		0.16	0.13	3.510	Tetrahydrofuran	0.55			2.636
α-Pinene		0.30	0.18	4.200	2-Methyltetrahydrofuran	0.47			2.820
					2,5-Dimethyltetrahydroturan	0.38			2.980
					1,4-Dioxane	c/.0	0.69	0.74	2.892

CALCULATED VALUES OF $\pi_2^{\rm H}$ AND LOG L^{16} VALUES

TABLE II

Alkunes					Tetrahydropyran	0.49			3.057
But-2-yme		0.17	0.37	1.856	3.4-Dihvdropyran	0.51			2.910
		0.10	0.73	3.480	Triovane	1.02			2,650
Oct-1-yne		<1.0 21.0	(7·0	020 0	Thim attendation (manual dabuda)	20.1			2 160
Oct-2-yne		0.16	0.31	3.830	I rimetnyltrioxane (paralgenyge)	0.00			201.C
11 - 1 12 - 1 1					Z-Methyl-Z-ethyl-1, J-dioxolane	80.0			3.33/
nationiphatics		000		1 050	Anethole		1.02		
I-Fluorooctane	, ,	00.0		0.010	Dimethoxymethane	0.52			1.894
Dichloromethane	0.66			2.019	Methoxvethoxvmethane	0.49			2.371
Trichloromethane	0.65	0.25	0.36	2.480	Methoxvisonronoxvmethane	0.45			2.697
Tetrachloromethane	0.35	0.28	0.35	2.823	Diathowimathone	0.45			0 780
1 2. Dichloroethane	0.74	0.35	0.55	2.573					2.000
		0.27	0.65	3 803	Ethoxypropoxymethane	44.0			3.280
I, I, 2, 2- I etrachlorocthane		25.0	0.00	012 0	Ethoxyisopropoxymethane	0.41			3.093
1-Chlorohexane		0.27	0.30	3./10	Ethoxy-secbutyloxymethane	0.41			3.609
Trichloroethene		0.34	0.33	2.997	Dinronvloxvmethane	0.47			3.762
Hexachlorobutadiene		0.62				0.40			1.027
Bromoethane		0.30	0 42	2.120	ropoxy-sec,-bulyloxylliculatic	0.4.0			/ 50.4
		0.30	0.30	3 611	Disopropoxymethane	0.37			3.3/0
		00.0	00.0	5 110	Dibutyloxymethane	0.43			4.726
2-Bromooctane		cc.U	07.0	011.0	Diisobutyloxymethane	0.37			4.331
Iodomethane		<u>c</u> .0	0.44	2.100	Di-secbutyloxymethane	0.37			4.380
1-Iodobutane		0.38	0.39	3.628	1 1-Dimethoxvethane	0 49			2.334
2-Iodobutane		0.40	0.39	3.390	1 1 Disthemations	110			3 066
1 1.Difluorotetrachloroethane		0.41		2.970	1,1-Dieunoxyeinane	14.0			000.0
1.0 Diffuence activity of the section of the sectio		0.41	0.33	3 000	 I.I-Dipropoxyethane 	0.37			3.964
1,2-Diffuororetraciiloroculanc		14.0	rr.0	000.0	1,1-Diisobutyloxyethane	0.26			4.491
Aromatic hydrocarbons					1,1-Dimethoxypropane	0.46			2.841
Renzene	0.48	0.53	0.47	2.803	1,1-Diethoxypropane	0.38			3.498
Tolnene	0.47	0.57	0.46	3.344	1.1-Dimethoxybutane	0.47			3.313
	0.47	0.56	0.46	3 780	1 1-Dimethoxv-7-methylnronane	042			3,148
	/+·0	0.20	0.40	2042	2.3 Dimethorynronane	0.43			2 690
0-Ayiene	0C.0	co.0	(1 .)	746.6					2 204
<i>m</i> -Xylene	0.47	0.60	0.46	3.804	2,2-Dietnoxypropane	25.0			400°.0
<i>p</i> -Xylene	0.46	0.61	0.46	3.836	I, I, 3-Trimethoxybutane	0.69	i	4 1 1	3.962
1,3,5-Trimethylbenzene		0.64	0.46	4.316	Methyl phenyl ether		0.73	0.70	3.859
1.2-Diethylbenzene	0.50			4.690	1,8-Cincole		0.47		4.290
1.3-Diethylhenzene	0.48			4.680					
1 4-Diethvlhenzene	0.47			4.680	Alaenyaes	5 L 0			0020
Styrene		0.70	0.55	3.863	Formalgenyge	C/.0		L \ 0	0001
Divicuo		0.55	0.68	3 715	Acetaldehyde	0/.0	0.63	0.65	1.230
гиспунсилуне		CC.0	00.0		Propanal	0.65	0.59	0.62	1.815
Haloaromatics					Butanal	0.63	0.61	0.61	2.270
1.2-Dichlorobenzene		0.65	0.70	4.489	2-Methylpropanal	0.58	0.59	0.59	2.120
Renzvlchloride		0.69	0.78	4.320	Pentanal	0.63			2.851
					2-Methylbutanal	0.58			2.733
Ethers					3-Methylbutanal	0.60	0.62	0.58	2.620
Dimethyl ether	0.36			1.285	2 2-Dimethylnronanal	0.49			2.406
Diethyl ether	0.27	0.19	0.27	2.015	Hexanal	0.64	0.59	0.59	3.370
Dipropyl ether	0.23			2.954	Hentanal	0.65	0.58	0.59	3.860
Diisopropyl ether	0.16			2.482	Octanal	i	0.57	0.57	4.380
								(Contin	ed on p. 218)

TABLE II (continued)									
Compound	$\pi_2^{\rm H}$			Log L ¹⁶	Compound	$\pi_2^{\rm H}$			Log L ¹⁶
	Eqn. 7	Eqn. 16	Eqn. 8	i		Eqn. 7	Eqn. 16	Eqn. 8	
Aldehydes (continued)					Esters (continued)				
2-Ethylhexanal	0.56			4.179	2-Ethyl-1-hexyl acetate	0.60			5.025
Prop-2-ene-1-al (acrolein)	0.74	0.68	0.58	1.656	Cyclohexyl acetate	0.69			4.454
trans-But-2-ene-1-al	0.81	0.85	0.75	2.570	Methyl propanoate	0.62	0.56	0.58	2.431
2-Methylprop-2-ene-1-al	0.62			2.180	Ethyl propanoate	0.58			2.807
(methacrolein)					Propyl propanoate	0.57			3.338
trans-Hex-2-ene-1-al		0.88	0.85		Isopropyl propanoate	0.52			3.028
2-Ethylbut-2-ene-1-al	0.68			3.436	Butyl propanoate	0.57			3.883
trans-Hept-2-ene-1-al		0.85	0.84		Isobutyl propanoate	0.54			3.635
trans-Oct-2-ene-1-al		0.55			Pentyl propanoate	0.58			4.331
2-Ethylhex-2-ene-1-al	0.62			4.371	3-Methylbutyl propanoate	0.56			4.153
Hexa-2,4-dienal	0.00			3.800	2-Pentyl propanoate	0.52			4.024
Furtural		0.97	1.05	3.262	2-Ethyl-1-hexylpropanoate	0.55			5.486
Benzaldehyde		0.99	0.94	3.985	Mcthyl butanoate	0.61			2.893
3-Methoxybutanal	0.85				Ethyl butanoate	0.56			3.271
Ketones					Propyl butanoate	0.56	0.54	0.51	3.783
Propanone	0.73	0.77	0.66	1.696	Isopropyl butanoate	0.51			3.482
Butanone	0.69	0.72	0.66	2.287	Butyl butanoate	0.56			4.275
Pentan-2-one	0.66	0.70	0.66	2.755	Isobutyl butanoate	0.54			4.097
Pentan-3-one	0.64			3.271	Pentyl butanoate	0.57			4.764
3-Methylbutan-2-one	0.63			2.692	3-Methylbutyl butanoate	0.55			4.597
Hexan-2-one	0.67	0.71	0.65	3.262	2-Pentyl butanoate	0.51			4.472
Hexan-3-one	0.62	0.65	0.58	3.271	2-Ethyl-1-hexyl butanoate	0.57			5.856
3-Methylpentan-2-one	0.62			3.163	Methyl isobutanoate	0.56			2.636
4-Methylpentan-2-one	0.62			3.089	Butyl isobutanoate	0.51			4.068
3,3-Dimethylbutan-2-one	0.58			2.928	Isobutyl isobutanoate	0.49	0.56	0.46	3.885
Heptan-2-one	0.67	0.69	0.64	3.760	3-Methylbutyl isopentanoate		0.55	0.55	4.371
Heptan-3-one	0.62			3.776	Allyl formate	0.76			2.256
Heptan-4-one	0.61			3,705	Allyl acetate	0.72			2.723
4,4-Dimethylpentan-2-one	0.57			3.344	Allyl propanoate	0.67			3.241
2,4-Dimethylpentan-3-one	0.52			3.403	Vinyl acetate	0.66			2.152
Octan-2-one	0.68	0.68	0.65	4.257	Vinyl butanoate	0.56			3.191
Nonan-2-one	0.68	0.69	0.64	4.735	I-Propenyl acetate	0.67			2.741
Nonan-5-one	0.61			4.698	Isopropenyl acetate	0.68			2.611
Decan-2-one		0.67	0.65	5.245	Methyl acrylate	0.68			2.360
Undecan-2-one		0.67	0.64	5.732	Ethyl acrylate	0.64			2.758
Dodecan-2-one		0.67	0.64	6.167	2-Ethyl-I-hexyl acrylate	0.61			5.445
Cyclopentanone	0.84	0.83	0.86	3.221	Propyl acrylate	0.62			3.260
Cyclohexanone	0.84	0.87	0.87	3.792	Butyl acrylate	0.62			3.790
Cycloheptanone		0.84	0.86	4.376	Methyl methacrylate	0.62			2.880

Cyclo-octanone		0.83	0.85	4.981	Allyl acrylate	0.72			3.160	
Cyclononanone		0.83	0.84	5.537	2-Methoxyethyl acetate	0.93			3.290	
Cyclodecanone		0.83	0.84	6.063	2-Ethoxyethyl acetate	0.87	0.68	0.79	3.747	
Cycloundecanone		0.83	0.83	6.621	3-Methoxy-1-butyl acetate	0.83			4.048	
Cyclododecanone		0.83	0.83	7.222	3-Methoxy-1-butyl acrylate	0.83			4.048	
Cyclotridecanone		0.82	0.82	7.783	Methylene diacetate	1.16			3.419	
Cyclotetradecanone		0.82	0.82	8.334	Ethylene diacetate	1.20			3.937	
Carvone		0.86	98.0	5.330	Ethylene dipropanoate	1.05			4.914	
But-3-ene-2-one	0.76			2.330	Propylene diacrylate	1.10			4.979	
3-Methylbut-3-ene-2-one	0.68			2.691	Benzyl acetate		1.19	0.95	4.991	
Hex-5-ene-2-one	0.75			3.181	Methyl benzoate		0.77	1.11	4.634	
4-Methylpent-3-ene-2-one	0.70			3.300	Methyl salicylate		0.82			
Butane-2,3-dione	0.52	0.71	0.74	1.639						
Pentane-2,3-dione	0.47			2.209	Nitro compounds					
Pentane-2,4-dione	0.56			2.772	Nitromethane		0.73	0.86	1.892	
Acetonhenone		1 09	0 00	4 483	Nitroethane		0.74	0.87	2.414	
		1.00			1-Nitropropane		0.71	0.86	2.894	
sters					2-Methyl-2-nitropropane		0.82	0.82	2.710	
Methyl formate	0.72			1.285	3-Nitrotoluene		1.08	1.05	5.062	
Ethyl formate	0.67			1.845						
Propyl formate	0.65	0.56	0.60	2.443	Nuries					
Isopropyl formate	0.62			2.230	Acetonitrile		0.80	0.85	1.739	
Rutví formate	0.66			2 958	1-Cyanopropane		0.78	0.84	2.604	
Isobutyl formate	0.67			022.2	1-Cyanobutane		0.80	0.83	3.108	
Isouuryi totulate 200 - Ruful formate	0.02			730	Benzonitrile		1.05	1.04	4.004	
bentyl formate	0.01			3 448	Aminac					
	00.0				Antines			ţ		
2-Pentyl formate	0.00			3.250	secButylamine		0.21	0.47	2.410	
3-Pentyl formate	0.60			3.226	Allylamine		0.29		2.268	
Hexyl formate	0.67			3.970	Trimethylamine		0.47		1.620	
Methyl acetate	0.67	0.63	0.61	116.1	Hatavorskies					
Ethyl acetate	0.62	0.60	0.59	2.314	Duriding		00.0	000	. 00 L	
Propyl acetate	0.61	0.60	0.57	2.819			0.00	0.80	5.00.5	
Isopropyl acetate	0.57			2.546	2,3,0-1 runetnytpyriaine		0.71		4.200	
Butyl acetate	0.61	0.59	0.58	3.353	rymole		10.0	0.00	C08. 7	
Isobutyl acetate	0.58			3.161	1 rimetnytpyrazine		0.77			
secButyl acetate	0.56			3.054	2-Meunyi-3-etuyipyrazine		0.73			
tertButvl acetate	0.50			2.802	2-Methoxy-3-isobutylpyrazine		0.56			
Pentyl acetate	0.62	0.58	0.59	3.844	2,4,5-1 rimethyloxazole		0.68			
3-Methylbutyl acetate	0.60	0.59	0.53	3.740	Carboxvlic acids					
2-Pentyl acetate	0.56			3.568	Acetic acid		0.68		1.750	
3-Pentyl acetate	0.56	ŕ		3.679	Propanoic acid		0.60		2.290	
2-Methyl-2-butyl acetate	0.51			3.340	Butanoic acid		0.56		2.830	
Hexyl acetate	0.63			4.351	2-Methylpropanoic acid		0.58		2.670	
4-Methyl-2-pentyl acetate	0.55			3.822	Pentanoic acid		0.58		3 380	
2. Fthvl-1-butvl acetate	0.60			4 178	2-Methylbutanoic acid		0.55		090.0	
E-Eury-1-Outy1 average Uantul contato	0.62			370 V	2 Mothellintencie acid		52 0		007.0	
Itchtyl acctate	CO.O			1007	D-INICITI ATTACTURATION ACTU		00.0		3.140	

HYDROGEN BONDING. XVI.

219

(Continued on p. 220)

LE II (continued)	

Compound	π ^H			Log L^{16}	Compound	π ^H		The second se	Log L^{16}
4	7			5	4	7)
	Eqn. 7	Eqn. 16	Eqn. 8			Eqn. 7	Eqn. 16	Eqn. 8	
Carboxvlic acids (continued)					Hvdroxylic componds (contined)			I.	
Hexanoic acid		0.62		3.920	Prop-2-en-1-ol (allyl alcohol)	0.44	0.46		1.951
2-Methylpentanoic acid		0.68		3.680	But-2-en-1-ol	0.49			2.618
Heptanoic acid		0.58		4.460	But-3-en-1-ol	0.47			2.442
Octanoic acid		0.56		5.000	But-3-en-2-ol	0.43			2.206
Nonanoic acid		0.53		5.550	2-Methylprop-2-en-1-ol	0.45			2.509
Decanoic acid		0.50		060.9	Pent-3-en-1-ol	0.50			3.064
Undecanoic acid		0.46		6.640	Pent-4-en-1-ol	0.46			2.715
Dodecanoic acid		0.43		7.180	Pent-1-en-3-ol	0.43			2.752
3-Butenoic acid		0.62			2-Methylbut-3-cn-2-ol	0.41			2.376
					trans-Hex-2-en-1-ol		0.43		3.510
Phenyls					trans-Hept-2-cn-1-ol		0.40		4.010
2-Chlorophenol		0.00		4.93/	trans-Oct-2-en-1-ol		0.41		4.520
Saircylaldenyde		96.0		4.750	Prop-2-yn-1-ol	0.46			2.050
Hydroxylic compounds					2-Methylbut-3-yn-2-ol	0.47			2.209
Water	0.40			0.260	2-Chloroethanol	0.54			2.630
Methanol	0.39	0.46		0.970	2-Methoxyethanol	0.59			2.490
Ethanol	0.40	0.41		1.485	2-Ethoxyethanol	0.56			2.815
Propan-1-ol	0.41	0.42		2.031	2-Butoxyethanol	0.57			3.806
Butan-1-ol	0.42	0.41		2.601	2-Allyloxyethanol	0.64			3.283
2-Methylpropan-1-ol	0.38	0.42		2.413	2-Methoxypropan-1-ol	0.58			2.793
Pentan-1-ol		0.41		3.106	2-Ethoxypropan-1-ol	0.56			3.115
2-Methylbutan-1-ol	0.39	0.41		3.011	3-Ethoxypropan-1-ol	0.57			3.426
3-Methylbutan-1-ol	0.39	0.42		3.011	I-Methoxypropan-2-ol	0.61			2.655
2,2-Dimethylpropan-I-ol	0.33			2.650	I-Propoxypropan-2-ol	0.57			3.495
Hexan-1-ol	0.42	0.40		3.610	3-Methoxybutan-1-ol	0.66			3.398
2-Methylpentan-1-ol	0.40			3.530	I-Ethoxypentan-3-ol	0.60			4.102
3-Methylpentan-I-ol	0.44			3.500	4-Methyl-4-methoxypentan-2-ol	0.65			3.963
4-Methylpentan-1-ol	0.43			3.500	3-Hydroxybutan-2-one	0.78			3.573
2-Ethylbutan-1-ol	0.40			3.523	4-Hydroxybutan-2-one	0.85			3.160
2,2-Dimethylbutan-1-ol	0.37			3.320	3-Methyl-4-hydroxybutan-2-one	0.81			3.573
Heptan-1-ol	0.43	0.39		4.115	3-Methyl-3-hydroxybutan-2-one	0.75			2.951
2,2-Dimethylpentan-1-ol	0.37			3.780	4-Methyl-4-hydroxypentan-2-one	0.83			3.475
Octan-1-ol	0.43	0.39		4.619	Thiols				
2-Ethylhexan-1-ol	0.41			4.433	Ethanathiol		0.76	0 34	2173
2-Ethyl-4-methylpentan-1-ol	0.39			4.266	1-Drongnethiol		0.25	12.0	2.485
Nonan-1-ol	0.39	0.39		5.124	2-Proparethiol		0.30	0.37	2 406
Decan-1-ol		0.39		5.628	t-Rutanethiol		0.78	22.0	3 243
Undecan-1-ol		0.39		6.130	7-Dutancunoi 7-Methvl-1-nronanethiol		0.30	0.37	3 091
Dodecan-1-ol		0.38		6.640	2-Mathul-1-propagathio		0.78 0.78	6C U	2 558
Propan-2-ol	0.39	0.42		1.764	Z-IMERINYI-Z-PLOPARIMUNI		04.0	17.0	····

Butan-2-ol	0.41	0.44	2.338	1-Pentanethiol	0.27	0.34	3.720
Pentan-2-ol	0.40		2.840	3-Methyl-1-butanethiol	0.27	0.18	3.360
Pentan-3-ol	0.40		2.860	1-Hexanethiol	0.26	0.35	4.220
3-Methylbutan-2-ol	0.39		2.793	1-Heptanethiol	0.27	0.33	4.720
Hexan-2-ol	0.40	0.44	3.340	1-Octanethiol	0.26	0.33	5.270
Hexan-3-ol	0.39	0.41	3.343	1-Nonanethiol	0.26	0.33	5.790
3-Methylpentan-2-ol	0.40		3.371	I-Decanethiol	0.25	0.33	6.318
4-Methylpentan-2-ol	0.38		3.179	Thiophenol	0.70	0.84	4.118
2-Methylpentan-3-ol	0.39		3.240	1,2-Ethanedithiol	0.43		
2,3-Dimethylbutan-2-ol	0.41		3.167	Benzylthiol	0.71		
3,3-Dimethylbutan-2-ol	0.37		3.090	Allylthiol	0.35	0.44	2.654
Heptan-2-ol	0.40		3.842	Culturidos			
Heptan-3-ol	0.40		3.860	Dittingeton	0 60		
Heptan-4-ol	0.39		3.850	Dimetral anthida	0.00	0.27	1 120
2,4-Dimethylpentan-3-ol	0.40		3.603	Disthyl sulphide	0.27	12.0	3 104
Octan-2-ol	0.41		4.343	Diaroaul aufutud	70.0	12.0	100.1 V
2-Methylpropan-2-ol	0.38	0.50	1.963	Liptopyi suipinae Meetral rated mitatiae	00.0	10.0	121.4
2-Methylbutan-2-ol	0.41	0.47	2.630		07.0		001.7
2-Methylpentan-2-ol	0.40	0.48	3.081	Methyl propyl sulphide	0.38	9.0 20	3.24U
3-Methylnentan-3-ol	0.45	0.47	3.277	Disopentyl sulphide	4.0 25	0.28	0.540
2-Methylponun-2-01 2-Methylpontan-2-01	2	0.47	060 8	Dibutyl sulphide	0.38	0.33	4.950
2-INCUIPTINC PLAIT-2-01		0.46	0001	Diallyl sulphide	0.49		3.750
3-Meinymepian-3-01	74.0	0.+.0	3 785	Propylene sulphide	0.39		2.870
3-Einyipentan-3-01	0.47		107.0	Tetrahydrothiophene	0.47	0.50	3.660
Cyclopropylcarbinol	0.57		2.672	Thionhene	0.50	0.50	2.943
Cyclopentanol	0.55	0.47	3.241	2-Methylthiophene	0.55	0.53	3.302
Cyclohexanol	0.57		3.758	2 5-Dimethylthionhene	0.60	0.49	3 806
2-Methylcyclohexanol	0.52		4.110	2,2-Dimethyl disulphide	0.47	041	3 550
cis.cis-2,6-Dimethylcyclohexanol		0.43		Diathul disulatide	070	0.44	4 210
cis, trans-2, 6-Dimethylcyclohexanol		0.45		Dimethyl trisuluhide	150	5	0171
trans, trans-2, 6-Dimethylcyclohexanol		0.51		Mathul thissetste	0.65		
<i>dl-</i> α-Terpineol		0.57		Methyl thionronancate	0.61		
exo-Ethylfenchol		0.52		Mothul thiskutanoots	0.50		
1.2-Ethanediol	0.50		2.661		60.0		
1,2-Propanediol	0.49		2.918	Metnyl thiopentanoate	10.0		
1,2-Butanediol	0.63		3.525	Thiocyanates and isothiocyanates			
2-Methyl-1,2-propanediol	09.0		3.190	Phenyl isothiocyanate	1.00		
dl-2,3-Butanediol	0.62		3.250	Allyl isothiocyanate	09.0		
meso-2,3-Butanediol	0.65		3.291	Ethyl isothiocyanate	0.61		
1,3-Propanediol	0.46		3.263	Methyl thiocyanate	0.76		
1,3-Butanediol	0.68		3.642				
1,4-Butanediol	0.46		3.795				

only five data points in each regression, and no less than four explanatory variables. In principle, since we have five equations and (for each solute) four unknowns, viz., R_2 , π_2^* , $\beta_2^{\rm H}$ and log L^{16} , we could determine these unknowns through a set of simultaneous equations. This procedure proved to be useless, probably because there is not a wide enough range of constants in the five equations of the type of eqn. 8. However, Patte et al. [11] did manage to analyse the 240×5 data matrix to yield five characteristic solute parameters, denoted α , w, ε , π and β . In order to avoid confusion with our own parameters, we refer to Patte *et al.*'s set as αL , wL, εL , πL and βL . Each of these parameters for the 240 solute set can be examined via eqn. 1, where log $SP = \alpha L$, wL, etc. We found that αL was mainly a size factor and that βL was a general combination of factors. For the other three solute parameters of Patte et al. we obtained the following regressions:

 $\pi L = -0.040 + 0.342R_2 - 0.265\pi_2^* + 2.540\alpha_2^{\rm H} \quad (9)$

 $\varepsilon L = 0.165 + 2.796R_2 - 0.602\pi_2^* - 1.426_2^{\rm H}$ (10)

$$wL = -0.081 - 1.700R_2 + 2.490\pi_2^* + 0.561\alpha_2^{\rm H} (11)$$

Eqns. 9-11 can be rearranged to yield

$$\alpha_2^{\rm H} = 0.0218 + 0.0335wL - 0.0251\varepsilon L + 0.3722\pi L$$
(12)

 $\tau_2^*(\pi_2^{\rm H}) = -0.0060 + 0.4755wL + 0.2826\varepsilon L + 0.0536\pi L$ (13)

$$R_2 = 0.0492 + 0.1195wL + 0.4057\varepsilon L + 0.2014\pi L$$
(14)

If R_2 is known, as it usually is, then any two equations out of eqns. 9–11 will yield α_2^H and π_2^* . However, the best pair of equations to use is clearly eqns. 9 and 11, which yield

$$\alpha_2^{\rm H} = 0.0187 - 0.0620R_2 + 0.0409wL + 0.3847\pi L$$
(15)

$$\pi_2^*(\pi_2^{\rm H}) \succeq 0.0287 + 0.6954R_2 + 0.3932wL - 0.0789\pi L$$
(16)

Values of $\pi_2^{\rm H}$ calculated via eqn. 16 are listed in Table II. We can also simply take the set of five equations, eqn. 8, and, knowing R_2 , log L^{16} and where necessary $\alpha_2^{\rm H}$, back-calculate values of $\pi_2^{\rm H}$. For each solute the five back-calculated $\pi_2^{\rm H}$ values can be averaged, and this average is also given in Table II. The error in π_2^{H} between the five equations is *ca*. 0.03 unit. There are a few omissions in this set of π_2^{H} values; these arise through the lack of one or another of the remaining solute parameters.

Although the combination of solutes in the McReynolds and Patte *et al.* sets numbers several hundred, there are some notable omissions. First, most of the solutes are aliphatic, so that some of the simplest functionally substituted aromatic solutes are missing. Second, many of the polyhalogenated aliphatic solutes are either missing, or have π_2^H values that are discordant when calculated from the McReynolds or Patte *et al.* set. Finally, a number of important solutes such as nitroalkanes and nitriles need to be studied further.

Fellous *et al.* [13] listed GLC data for seventeen aromatic solutes on a number of stationary phases. In order to back-calculate π_2^{H} using the general solvation equation (eqn. 1), it is essential that the *s* coefficient be as large as possible, *i.e.*, that the stationary phase be polar. Results from the seven most polar phases used by Fellous *et al.* are given in Table III. There is generally good agreement with values listed in Table II.

Several workers have examined sets of halogenated or polyhalogenated solutes on various stationary phases [14–18]. In Table IV we give $\pi_2^{\rm H}$ values back-calculated from the general solvation regression equation (eqn. 1) and also from our own results on a variety of polar stationary phases.

McReynolds [10] did not examine any aliphatic nitro compounds or nitriles, but in Table II we give values of $\pi_2^{\rm H}$ for a few such compounds, obtained from Patte *et al.*'s data set. We examined both series of solutes on a number of stationary phases, and conclude that $\pi_2^{\rm H}$ is even larger than the values given in Table II. Our results suggest that for 1-nitroalkanes $\pi_2^{\rm H}$ is 0.95 and that for *n*-alkyl cyanides $\pi_2^{\rm H}$ is *ca*. 0.90 unit (see Table IV).

We have not detailed the $\alpha_2^{\rm H}$ values calculated from eqn. 7 or 15 because these follow closely the original hydrogen-bond $\alpha_2^{\rm H}$ values described before [4]. Only with the carboxylic acids do the new effective or $\Sigma \alpha_2^{\rm H}$ values (0.60 unit) differ markedly from $\alpha_2^{\rm H}$ (0.54 unit). In Table IV we collect all the $\Sigma \alpha_2^{\rm H}$ values that correspond to the $\pi_2^{\rm H}$ values we have set out.

Although it was not our intention to construct a new $\Sigma \beta_2^{\text{H}}$ scale, we thought it prudent to check that

TABLE III

VALUES OF π_2^H FOR SOME AROMATIC COMPOUNDS CALCULATED FROM RESULTS OF FELLOUS *ET AL.* [13]

X in PhX	π_2^{H}	S.D."	π_2^{H} (Tab	le II)	
			Eqn. 7	Eqn. 16	Eqn. 8
н	0.53	0.02	0.48	0.53	0.47
CF ₃	0.45	0.02			
CH ₃	0.52	0.01	0.47	0.57	0.46
OCH ₃	0.73	0.02		0.73	0.70
F	0.57	0.02			
Cl	0.67	0.01			
Br	0.73	0.01			
1	0.79	0.01			
CHO	0.99	0.01		0.99	0.94
SH	0.78	0.01		0.70	0.84
CO ₂ CH ₃	0.85	0.01		0.77	1.11
CN	1.07	0.01		1.05	1.04
COCH ₃	0.98	0.01		1.09	0.99
NH ₂	0.96	0.02			
NO2	1.10	0.01		1.08*	1.05 ^b
CH ₂ OH	0.85	0.01			
OH	0.88	0.01			

^a Average deviation from 7 results.

^b For 3-nitrotoluene.

the combined solvation parameters do yield reasonable results in systems where solute basicity is important. We therefore give in Table IV preliminary $\Sigma \beta_2^{\rm H}$ values, again based on our original $\beta_2^{\rm H}$ values [5]. We hope in the near future to report on a much more comprehensive list of effective or $\Sigma \beta_2^{\rm H}$ values.

Finally, we include in Table II the log L^{16} values that we have used. Where these differ from previous values, the new set is to be preferred.

DISCUSSION

The "inverse matrix" method we have used to analyse the data of McReynolds is a novel approach to the extraction of solvation parameters from data on a large number of stationary phases. The method works very well, but is limited in scope to results for a given set of solutes on at least fifteen phases. Our back-calculation of parameters from regression equations based on Patte *et al.*'s data set, eqn. 8, is likely to be the most common procedure. In principle, as pointed out above, if three solvation parameters are unknown (*e.g.*, $\pi_2^{\rm H}$, $\alpha_2^{\rm H}$ and log L^{16} in eqn. 8), it is possible to calculate all three using three simultaneous equations derived from retention data on three phases. In practice, this method can hardly ever be used unless the three phases are specifically chosen to give rise to solvation equations with very different coefficients. In the event, all of our new π_2^H values have been obtained by either the inverse matrix method or simple back-calculation and averaging. Overall we think that the π_2^H values listed in Table IV are accurate to *ca* 0.02 unit, but not more.

As can be seen from the data collected in Table II, there is a compelling need to correlate and interpret $\pi_2^{\rm H}$ values in order to codify existing data and to help in the estimation of further values. An analysis of all of our results has led us to two very simple rules governing $\pi_2^{\rm H}$ values for aliphatic solutes:

Rule 1. In any homologous series of functionally substituted aliphatic compounds, $\pi_2^{\rm H}$ is constant except for the first one or two members of the series.

Rule 2. In any given series of functionally substituted aliphatic compounds, $\pi_2^{\rm H}$ decreases by 0.03 unit for each branch in a carbon chain.

We now examine these rules in turn. Rule 1 would be extremely valuable in the estimation of $\pi_2^{\rm H}$ values, because if $\pi_2^{\rm H}$ was known for a few members of a homologous series, then the same value could be applied to all other members. Unfortunately, Li et al. [12] apparently find that their own π_2^c parameter varies markedly along homologous series. Thus along the homologous series of *n*-alkylcarboxylic acids, π_2^c increases from 0.50 (acetic acid) to 0.72 (nonanoic acid) (see Table V), whereas our $\pi_2^{\rm H}$ value is constant at 0.60 unit after the first few members of the series. We note that π_2^c and π_2^H are "scaled" differently, so that for the present discussion only trends in these parameters are important. How the two sets of π_2 values in Table V both result in good fits to experimental data can be seen by inspection of the corresponding $\Sigma \alpha_2^{\rm H}$ values, also given in Table V. Our constant π_2^{H} value is accompanied by a constant $\Sigma \alpha_2^{\rm H}$ value, whereas Li et al.'s increase in $\pi_2^{\rm c}$ is counteracted by a decrease in $\Sigma \alpha_2^{\rm H}$, so that both combinations of $\pi_2/\Sigma \alpha_2^{\rm H}$ fit the experimental data with respect to the solvation eqn. 1. We suggest, however, that other experimental evidence supports the constancy of $\pi_2^{\rm H}$ and $\Sigma \alpha_2^{\rm H}$. Thus, the dipole moment of the n-alkylcarboxylic acids (except for formic acid) remains constant [19], the gas-phase proton transfer acidities of acetic acid, propanoic

TABLE IV

RECOMMENDED SOLVATION PARAMETERS FOR USE IN EQN. 1ª

Values in parentheses are approximate values.

Solute	$\Sigma \pi_2^{11}$	$\Sigma \alpha_2^{\rm H}$	$\Sigma \beta_2^{\rm H}$	Solute	$\Sigma \pi_2^{\rm H}$	$\Sigma \alpha_2^{H}$	$\Sigma \beta_2^{\rm H}$
Rare gas	0.00	0.00	0.00	Trichloromethane	0.49	0.15	0.02
Hydrogen	0.00	0.00	0.00	Tetrachloromethane	0.38	0.00	0.00
Oxygen	0.00	0.00	0.00	1,1-Dichloroethane	0.49	0.10	0.10
Nitrogen	0.00	0.00	0.00	1,2-Dichloroethane	0.64	0.10	0.11
Nitrous oxide	0.35	0.00	0.10	1,1,1-Trichloroethane	0.41	0.00	0.09
Carbon monoxide	0.00	0.00	0.04	1,1,2-Trichloroethane	0.68	0.13	0.08
Carbon dioxide	0.42	0.00	0.10	1,1,1,2-Tetrachloroethane	0.63	0.10	0.08
Alkane	0.00	0.00	0.00	1,1,2,2-Tetrachloroethane	0.76	0.16	0.12
Cycloalkane	0.10	0.00	0.00	Dibromomethane	0.67	0.10	0.10
Decalin	0.25	0.00	0.00	Tribromomethane	0.68	0.15	0.09
Hydrindane	0.20	0.00	0.00	Fluorobenzene	0.57	0.00	0.10
Ethene	0.10	0.00	0.07	Chlorobenzene	0.67	0.00	0.09
Other alkene	0.08	0.00	0.07	1,2-Dichlorobenzene	0.79	0.00	0.03
Cycloalkene	0.20	0.00	0.10	1,3-Dichlorobenzene	0.74	0.00	0.03
α-Pinene	0.24	0.00	0.10	1,4-Dichlorobenzene	0.69	0.00	0.03
Diene	0.23	0.00	0.10	2-Chlorotoluene	0.66	0.00	0.09
Ethyne	0.25	0.15	0.15	3-Chlorotoluene	0.67	0.00	0.09
Propyne	0.25	0.13	0.15	4-Chlorotoluene	0.67	0.00	0.09
But-1-yne	0.25	0.13	0.15	2,4-Dichlorotoluene	0.73	0.00	0.03
Other alk-1-yne	0.23	0.13	0.10	2.6-Dichlorotoluene	0.73	0.00	0.03
Alk-2-yne	0.30	0.00	0.10	3.4-Dichlorotoluene	0.79	0.00	0.03
Benzene	0.52	0.00	0.14	Bromobenzene	0.73	0.00	0.09
Toluene	0.52	0.00	0.14	1.2-Dibromobenzene	0.89	0.00	0.03
o-Xylene	0.54	0.00	0.17	1.3-Dibromobenzene	0.84	0.00	0.03
<i>m</i> -Xylene	0.52	0.00	0.17	1.4-Dibromobenzene	0.79	0.00	0.03
<i>p</i> -Xylene	0.52	0.00	0.17	Iodobenzene	0.79	0.00	0.09
Ethylbenzene	0.52	0.00	0.15		0.1.2	0.00	0.07
n-Propylbenzene	0.52	0.00	0.15	Dimethyl ether	0.27	0.00	0.41
Isopropylbenzene	(0.51)	0.00	0.15	Di-n-alkyl ether	0.25	0.00	0.45
1,2,3-Trimethylbenzene	0.54	0.00	0.20	Furan	0.53	0.00	0.15
1,2,4-Trimethylbenzene	0.52	0.00	0.20	2-Methylfuran	0.50	0.00	(0.15)
1,3,5-Trimethylbenzene	0.52	0.00	0.20	Tetrahydrofuran	0.52	0.00	0.48
<i>n</i> -Alkylbenzene	0.52	0.00	0.15	2-Methyltetrahydrofuran	0.48	0.00	0.55
Styrene	0.63	0.00	0.18	3,5-Dimethyltetrahydrofuran	0.38	0.00	0.55
Phenylethyne	0.58	0.12	0.21	Tetrahydropyran	0.47	0.00	0.55
Naphthalene	0.90	0.00	0.21	1,4-Dioxane	0.75	0.00	0.64
Fluoroalkane	0.35	0.00	0.10	Paraldehyde	0.68	0.00	
Chloromethane	0.43^{b}	0.00	0.08	Methyl phenyl ether	0.73	0.00	(0.33)
Chloroalkane	0.40	0.00	0.10	Ethyl phenyl ether	0.72	0.00	(0.33)
Bromomethane	0.43^{b}	0.00	0.10	Benzodioxane	1.01	0.00	
Bromoalkane	0.40	0.00	0.10	Formaldehyde	0.70	0.00	(0.33)
Iodomethane	0.43^{b}	0.00	0.12	Acetaldehyde	0.67	0.00	0.45
Iodoalkane	0.40	0.00	0.15	n-Alkanal	0.65^{b}	0.00	0.45
secChloroalkane	0.35	0.00	0.12	Prop-2-en-1-al	0.74	0.00	0.45
secBromoalkane	0.35	0.00	0.12	trans-Alk-2-en-1-al	0.80	0.00	0.45
secIodoalkane	0.35	0.00	0.17	Benzaldehyde	0.99	0.00	(0.42)
tertChloroalkane	0.25	0.00	0.12	2-, 3- or 4-methylbenzaldehyde	0.95	0.00	(0.44)
tert -Bromoalkane	0.25	0.00	0.12	Pronanono	0.70	0.04	0.51
tertIodoalkane	0.25	0.00	0.12	Butanone	0.70	0.04	0.51
Dichloromethane	0.57	0.00	0.10	Alkan 2 one	0.70	0.00	0.51
	0.57	0.10	0.03	Aikan-2-one	0.68	0.00	0.51

HYDROGEN BONDING. XVI.

TABLE IV (continued)

Solute	$\Sigma \pi_2^{ m H}$	$\Sigma \alpha_2^{\rm H}$	$\Sigma \beta_2^{H}$	Solute	$\Sigma \pi_2^{\rm H}$	$\Sigma \alpha_2^{H}$	$\Sigma \beta_2^{H}$
Alkan-(3,4,5)-one	0.66 ^b	0.00	0.51	Pyridine	0.82	0.00	
Cycloalkanone	0.86 ^b	0.00	0.52	2-Methylpyridine	0.80	0.00	
Acetophenone	0.98	0.00	(0.51)	3-Methylpyridine	0.80	0.00	
Methyl formate	0.69	0.00	0.39	4-Methylpyridine	0.80	0.00	
Ethyl formate	0.08	0.00	0.38	2,4,6-Trimethylpyridine	0.72	0.00	
n-Alkyl formate	0.00	0.00	0.38				
Methyl acetate	0.65	0.00	0.38	A cetic acid	0.65	0.61	0.41
Ethyl acetate	0.67	0.00	0.45	Propagoia agid	0.03	0.01	0.41
n Alkyl acetate	0.02	0.00	0.45	Propanoie acid	0.03	0.00	0.43
Methyl propaposte	0.00	0.00	0.45	Butanoic acid	0.02	0.60	0.43
Ethyl propanoate	0.00	0.00	0.45	<i>n</i> -Alkanoic acius	0.00-	0.00	0.43
	0.56	0.00	0.43	Watan	0.45	0.00	0.25
Vinul acetate	0.50	0.00	0.43	Water	0.45	0.82	0.35
Mathyl acculate	0.04	0.00	0.42	Ether al	0.44	0.43	0.47
Ethyl comulate	0.00	0.00	0.42	Ethanol Deimanni alaahala	0.42	0.37	0.48
Ethyl acrylate	0.04	0.00	0.42	Primary alcohols	0.42°	0.37	0.48
<i>n</i> -Alkyl acrylate	0.62*	0.00	0.42	Secondary alcohois	0.30	0.33	0.56
Methyl benzoate	0.85	0.00	0.50	Tertiary alconois	0.30	0.31	0.60
<i>n</i> -Alkyl benzoates	0.80	0.00	0.50		0.60	0.57	(0.15)
Nitromethane	0.95	0.12	0.27	Hexalluoropropan-2-ol	0.55	0.77	(0.03)
Nitroethane	0.95	0.05	0.27	Decalluoroneptan-1-ol	0.55	0.60	0.22
1-Nitropropane	0.95	0.02	0.27				
1-Nitroalkane	0.95	0.00	0.27	Phenol	0.88	0.60	
Nitrobenzene	1.10	0.00	0.27	o-Cresol	0.86	0.52	
2-, 3- or 4-nitrotoluene	1.10	0.00	0.27	m-Cresol	0.87	0.57	
A	0.00	0.00	0.00	p-Cresol	0.87	0.57	
Acetonitrile	0.90	0.09	0.30	2.3-Dimethylphenol	0.82	0.53	
Propionitrile	0.90	0.02	0.35	2.4-Dimethylphenol	0.82	0.53	
n-Alkyl cyanide	0.90	0.00	0.36	2.5-Dimethylphenol	0.82	0.53	
Benzonitrile	1.07	0.00	(0.30)	2 6-Dimethylphenol	0.82	0.39	
Ammonia	0.35°	0.10	0.62	3.4-Dimethylphenol	0.87	0.56	
Primary <i>n</i> -alkylamines	0.35°	0.10	0.64	3 5-Dimethylphenol	0.87	0.50	
Dimethylamine	0.30 ^c	0.08	0.67	2 4 6-Trimethylphenol	0.83	0.37	4
secdialkylamines	0.30 ^c	0.08	0.70	Benzyl alcohol	0.85	0.39	
Triethylamine	0.15°	0.00	0.81		0.00	0.07	
Aniline	0.96	0.26	(0.53)	Carbon disulphide	0.21	0.00	0.07
<i>o</i> -Toluidine	0.94	0.23	(0.57)	Methanethiol	(0.35)	0.00	0.07
<i>m</i> -Toluidine	0.94	0.23	(0.55)	1-Alkanethiol	0.35	0.00	0.24
<i>n</i> -Toluidine	0.94	0.23	(0.55)	3-Methyl-1-butanethiol	0.184	0.00	0.24
2 6-Dimethylaniline	0.93	0.20	(0.60)	Thiophenol	0.10	0.12	(0.15)
N-Methylaniline	0.94	0.17	(0.00)	Di-n-alkyl sylphide	0.78	0.12	0 32
N N-Dimethylaniline	0.82	0.00	(0.48)	Tetraalkyl supinde	0.00	0.00	0.02
	0.02	0.00	(0.40)		0.00	0.00	0.00

^a Values of $\pi_2^{\rm H}$ (this work) derived from those in Tables II and III plus other values we have calculated. Values of $\Sigma \alpha_2^{\rm H}$ and $\Sigma \beta_2^{\rm H}$ are based on those given in refs. 4 and 5.

^b Subtract 0.03 from $\pi_2^{\rm H}$ for each additional branch.

^e Provisional values.

^d See text.

acid and butanoic acid are almost the same (if anything, there is a slight increase in acidity along this series) [20] and the gas-phase hydrogen-bond acidity of propanoic acid is slightly less than that of acetic acid [21], not larger. As retention data can be accommodated as well by our constant π_2^H and $\Sigma \alpha_2^H$ values as by the variable parameters of Li *et al.*, we feel that Rule 1 is operative here.

There are other homologous series for which Li *et al.* found π_2^c to be a variable quantity, but for which $\Sigma \alpha_2^{\rm H} = 0$, *e.g.*, the alkan-2-ones or the cycloalkanones where π_2^c increases sharply along the series. In

COMPARISON OF π_2^{H} WITH π_2^{c} FOR CARBOXYLIC ACIDS

R in ROC ₂ H	This w	ork	Li et a	d. [12]
	π_2^H	α_2^H	π_2^c	$\alpha_2^{\rm H}$
Methyl	0.65	0.61	0.50	0.72
Ethyl	0.65	0.60	0.61	0.67
n-Propyl	0.62	0.60	0.57	0.62
n-Butyl	0.60	0.60	0.56	0.62
n-Pentyl	0.60	0.60	0.60	0.52
n-Hexyl	0.60	0.60	0.64	0.47
<i>n</i> -Heptyl	0.60	0.60	0.68	0.41
n-Octvl	0.60	0.60	0.72	0.35

some other series, however, π_2^c decreases slightly (the alk-1-ene series), or remains approximately constant (the alkanal or the alkylbenzene series). For the cycloalkanone series, as an example, we feel that the difference between Li et al.'s result and our findings is not fundamental at all, but is probably due to small but systematic differences in the log L^{16} values. As the sign of the $s\pi_2$ and $l \log L^{16}$ coefficients is always positive, a systematic trend in π_2^c increasing, together with a trend in log L^{16} becoming slightly smaller than expected, would tend to cancel out. This can be seen by comparison of the figures in Table VI. Just as for the carboxylic acid results, the combination of π_2^c with Li et al.'s calculated log L^{16} values will lead to very nearly the same goodness-of-fit as our combination of $\pi_2^{\rm H}$ and $\log L^{16}$. As it is always found that solute dipolarity,

TABLE VI

COMPARISON OF π_2^{H} WITH π_2^{e} FOR CYCLOALKANONES

$n \text{ in } (CH_2)_n CO$	This w	ork	Li et al. [12]		
	π_2^{H}	Log L^{16}	π_2^c	$\log L^{16}$	
4	0.86	3.221	0.58	3.120	
5	0.86	3.792	0.59	3.616	
6	0.86	4.376	0.66	4.110	
7	0.86	4.981	0.69	4.610	
8	0.86	5.537	0.72	5.110	
9	0.86	6.063	0.75	5.610	
10	0.86	6.621	0.78	6.110	
11	0.86	7.226	0.81	6.600	

as the dipole moment, is constant along any homologous series, we again feel that Rule 1 applies to the various homologous series we have considered.

Rule 2 is not so well founded, and we think it possible that there will be exceptions or amendments to the rule. However, at the moment, we feel that application of Rule 2 does allow a very large number of π_2^{H} values to be estimated for aliphatic compounds. We note that the starting point for application of the rule is not always the simplest member of any series.

According to our results in Table II, the alkanols are a significant exception to Rule 2, as $\pi_2^{\rm H}$ seems roughly constant over non-branched and branched members. However, because the coefficients of $\pi_2^{\rm H}$ and $\alpha_2^{\rm H}$ are both positive, and indeed follow each other for most stationary phases, there will be various combinations of $\pi_2^{\rm H}$ and $\alpha_2^{\rm H}$ that give rise to the same (or very similar) goodness-of-fit in any given solvation equation. We have checked that $\pi_2^{\rm H}$ values for alkanols calculated using Rules 1 and 2, together with the $\alpha_2^{\rm H}$ values listed in Table IV, yield regression eqations that are just as good as if π_2^H and α_2^H are allowed to "float". We give in Table IV our suggested $\pi_2^{\rm H}$ and $\alpha_2^{\rm H}$ values for alkanols, noting that we have deliberately amended the first-calculated values in Table II.

We also find a few minor anomalies, with respect to Rule 2. Thus, $\pi_2^{\rm H}$ for isopentanethiol is 0.18 (using Patte *et al.*,'s set) rather than 0.32 as calculated by Rule 2. Whether or not this is the result of a systematic experimental error, or even of an incorrectly named compound, we cannot say. Interestingly, Li *et al.* [12] also found an anomalously low $\pi_2^{\rm e}$ value for isopentylthiol.

Finally, we can compare our π_2^{H} scale, as summarised in Table IV, with the π_2^{e} scale of Li *et al.*. We agree completely with Li *et al.* in that a new π_2 scale is needed in place of $\pi_2^{\text{*}}$. Apart from the difference in treatment of homologous series, the two scales are in approximate agreement. For 198 of the 203 compounds listed by Li *et al.* [12], we have π_2^{H} values, and find that

$$\pi_2^{\rm c} = -0.103 + 0.845\pi_2^{\rm H} \tag{17}$$

with r = 0.944 and S.D. = 0.083 units. The intercept of -0.103 arises because Li *et al.* took cyclohexane as the zero ($\pi_2^c = 0.00$), but we take alkanes as zero. On the π_2^H scale, cyclohexane has $\pi_2^H = 0.10$ units.

HYDROGEN BONDING. XVI.

As mentioned above, we include in Table IV a provisional set of $\Sigma \beta_2^{\rm H}$ values to use with our new $\pi_2^{\rm H}$ and our $\Sigma \alpha_2^{\rm H}$ scale. In our view, it is most important that these three scales are constructed more or less simultaneously in order that they all be compatible. How well the scales listed in Table IV deal with various processes remains to be seen, but at the moment we can compare regressions of Patte et al.'s data using the Table IV values with our original regression equations. Details are given in Table VII and show that the new equations are much better than the old ones in terms of the correlation constant and standard deviation. However, the characteristic constants, r, s, a and l, are almost unchanged. Similarly, regression equations using McReynolds' data are much better than the original ones, whilst still giving very similar characteristic constants. Hence our analysis of the McReynolds' phases into

clusters or groups remains unchanged, and it is not necessary to repeat the 75 regressions. We give in Table VII a few comparisons to show exactly the connection between the old and the new equations.

In conclusion, we have constructed a comprehensive $\pi_2^{\rm H}$ scale, based only on solute properties, for use in solvation equations. As the dependent variable, log L' or log $V_{\rm G}$, in the equations used to calculate $\pi_2^{\rm H}$ is a free energy-related term, then $\pi_2^{\rm H}$ also will be related to Gibbs energy. We are now in a position where the main terms in eqn. 1, viz., $\pi_2^{\rm H}$, $\Sigma \alpha_2^{\rm H}$, $\Sigma \beta_2^{\rm H}$ and log L^{16} , are all related to Gibbs energy and hence form a thermodynamically consistent set of explanatory variables. The new $\pi_2^{\rm H}$ scale has an advantage in that the characteristic constants in all our previous equations remain the same, within any reasonable experimental error, so that our previous analyses and conclusions are unchanged.

TABLE VII

	COMPARISON	OF	NEW	AND	OLD	REGRESSIONS ^a
--	------------	----	-----	-----	-----	---------------------------------

Phase	с	r	5	а	1	S.D.	R	No.	
Patte et al.'s set									
Carbowax	-2.01	0.25	1.26	2.07	0.429	0.07	0.997	199	
	-2.07	0.26	1.37	2.11	0.442	0.13	0.986	168	
DEGS [®]	-1.77	0.35	1.58	1.84	0.383	0.07	0.997	199	
	-1.83	0.35	1.70	1.92	0.396	0.15	0.981	168	
PPE (6 rings) ^b	-2.51	0.14	0.89	0.67	0.547	0.06	0.997	199	
	-2.55	0.19	0.98	0.59	0.552	0.11	0.991	168	
TCEP [*]	-1.69	0.26	1.93	1.88	0.365	0.06	0.998	199	
	-1.75	0.23	2.12	1.94	0.379	0.16	0.982	168	
ZE7 ^b	-1.99	-0.41	1.46	0.77	0.432	0.07	0.995	199	
	-2.07	-0.38	1.61	0.70	0.442	0.13	0.983	168	
The McRevnolds' se	et at 120°C								
Apiezon J	-0.48	0.24	0.15	0.13	0.596	0.02	0.999	165	
	-0.48	0.27	0.13	0.13	0.594	0.03	0.998	148	
PPE (5 rings)	-0.69	0.14	0.92	0.61	0.560	0.02	0.999	168	
	-0.70	0.21	0.88	0.54	0.564	0.06	0.994	155	
Pluronic L72	-0.54	0.09	0.93	1.42	0.529	0.03	0.998	163	
	-0.54	0.17	0.89	1.41	0.531	0.08	0.992	153	
Carbowax 1540	-0.75	0.22	1.37	1.92	0.456	0.04	0.998	169	
	-0.75	0.31	1.34	1.87	0.457	0.09	0.987	151	
DEGS [®]	-0.97	0.26	1.76	1.80	0.375	0.05	0.995	158	
	-0.99	0.43	1.74	1.68	0.379	0.11	0.975	145	
ZE7 ^b	-0.76	-0.42	1.55	0.78	0.448	0.07	0.991	170	
	-0.82	-0.28	1.63	0.69	0.449	0.07	0.990	150	

^a The new constants in eqn. 1 are on the top lines and the old constants on the bottom lines; in all instances b = 0.

^b Abbreviations: DEGS = diethylene glycol succinate; PPE = polyphenyl ether; TCEP = tricyanoethoxypropane; ZE7 = zonyl E-7.

ACKNOWLEDGEMENTS

We thank the US Army Research, Development and Standardisation Group for support under Contract DAJA 45-87-C-0004, and we are very grateful to Professor Peter W. Carr for a preprint of ref. 12.

REFERENCES

- 1 M. H. Abraham, G. S. Whiting, R. M. Doherty and W. J. Shuely, J. Chem. Soc., Perkin Trans. 2, (1990) 1451.
- 2 M. H. Abraham, G. S. Whiting, R. M. Doherty and W. J. Shuely, J. Chem. Soc., Perkin Trans. 2, (1990) 1851.
- 3 M. H. Abraham, G. S. Whiting, R. M. Doherty and W. J. Shuely, J. Chromatogr., 518 (1990) 329.
- 4 M. H. Abraham, P. L. Grellier, D. V. Prior, P. P. Duce, J. J. Morris and P. J. Taylor, *J. Chem. Soc., Perkin Trans.* 2, (1989) 699.
- 5 M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, (1990) 521.
- 6 M. H. Abraham, P. L. Grellier and R. A. McGill, J. Chem. Soc., Perkin Trans. 2, (1987) 797.
- 7 M. J. Kamlet, M. H. Abraham, R. M. Doherty and R. W. Taft, *Nature (London)*, 106 (1984) 464.
- 8 R. W. Taft, M. H. Abraham, G. R. Famini, R. M. Doherty, J.-L. M. Abboud and M. J. Kamlet, *J. Pharm. Sci.*, 74 (1985) 807.

- 9 M. H. Abraham, G. J. Buist, P. L. Grellier, R. A. McGill, D. V. Prior, S. Oliver, E. Turner, J. J. Morris, P. J. Taylor, P. Nicolet, P.-C. Maria, J.-F. Gal, J.-L. M. Abboud, R. M. Doherty, M. J. Kamlet, W. J. Shuely and R. W. Taft, *J. Phys. Org. Chem.*, 2 (1989) 540.
- 10 W. O. McReynolds, *Gas Chromatographic Retention Data*, Preston Technical Abstracts, Evanston, IL, 1966.
- 11 F. Patte, M. Etcheto and P. Laffort, Anal. Chem., 54 (1982) 2239.
- 12 J. Li, Y. Zhang, A. J. Dallas and P. W. Carr, J. Chromatogr., in press.
- 13 R. Fellous, L. Lizzani-Cuvelier and R. Luft, Anal. Chim. Acta, 174 (1985) 53.
- 14 P. Urone, J. E. Smith and R. J. Katnik, Anal. Chem., 34 (1962) 476.
- 15 D. E. Martire and L. Z. Pollara, J. Chem. Eng. Data, 10 (1965) 40.
- 16 J. P. Sheridan, D. E. Martire and Y. B. Tewari, J. Am. Chem. Soc., 94 (1972) 3294.
- 17 E. F. Meyer, K. S. Stec and R. D. Hotz, J. Phys. Chem., 77 (1973) 2140.
- 18 G. Castello and T. C. Gerbino, J. Chromatogr., 437 (1988) 33.
- 19 A. L. McClellan, *Tables of Experimental Dipole Moments*, Vol. 2, Rahara Enterprises, El Cerrito, CA, 1974.
- 20 J. E. Bartmess, *The Gas Phase Acidity Scale*, personal communication.
- 21 G. Caldwell and P. Kebarle, J. Am. Chem. Soc., 106 (1984) 967.